Spike timing-dependent plasticity induces non-trivial topology in the brain
نویسندگان
چکیده
We study the capacity of Hodgkin-Huxley neuron in a network to change temporarily or permanently their connections and behavior, the so called spike timing-dependent plasticity (STDP), as a function of their synchronous behavior. We consider STDP of excitatory and inhibitory synapses driven by Hebbian rules. We show that the final state of networks evolved by a STDP depend on the initial network configuration. Specifically, an initial all-to-all topology evolves to a complex topology. Moreover, external perturbations can induce co-existence of clusters, those whose neurons are synchronous and those whose neurons are desynchronous. This work reveals that STDP based on Hebbian rules leads to a change in the direction of the synapses between high and low frequency neurons, and therefore, Hebbian learning can be explained in terms of preferential attachment between these two diverse communities of neurons, those with low-frequency spiking neurons, and those with higher-frequency spiking neurons.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملEmergence of slow collective oscillations in neural networks with spike-timing dependent plasticity.
The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous...
متن کاملSpike-timing computation properties of a feed-forward neural network model
Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g., serial and parallel pathways. To tractably determine h...
متن کاملA Theory of Loop Formation and Elimination by Spike Timing-Dependent Plasticity
We show that the local spike timing-dependent plasticity (STDP) rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDP's polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise synap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 88 شماره
صفحات -
تاریخ انتشار 2017